The earliest bird-line archosaurs and the assembly of the dinosaur body plan (2024)

Table of Contents
References Acknowledgements Author information Authors and Affiliations Contributions Corresponding author Ethics declarations Competing interests Additional information Extended data figures and tables Extended Data Figure 1 Skeletal anatomy of the aphanosaurs Dongusuchus efremovi, Yarasuchus deccanensis and Spondylosoma absconditum. Extended Data Figure 2 Histological sections of the limb bones of T. rhadinus gen. et sp. nov. Extended Data Figure 3 The relationships of T. rhadinus gen. et sp. nov. among archosauriforms from the Nesbitt dataset. Extended Data Figure 4 The relationships of Teleocrater rhadinus gen. et sp. nov. among archosauriforms from the Ezcurra dataset. Extended Data Figure 5 Phylogeny of early Avemetatarsalia illustrating the character distributions of the components of the crocodile-normal ankle configuration and showing that this ankle type was plesiomorphic for Archosauria, Avemetatarsalia, and possible less inclusive clades within Avemetatarsalia (for example, Dinosauriformes). Extended Data Figure 6 Ternary diagrams of measurements of the hindlimb elements (femur, tibia and longest metatarsal) of archosauriforms. Extended Data Figure 7 The relationships of S. taylori among archosauriforms from the Nesbitt dataset. Extended Data Figure 8 The relationships of S. taylori among archosauriforms from the Ezcurra dataset. Extended Data Figure 9 Disparity estimates for major archosaur groups and time intervals (weighted mean pairwise dissimilarity (WMPD)). Extended Data Figure 10 New character illustrations for the phylogenetic analysis. Supplementary information Supplementary Information PowerPoint slides PowerPoint slide for Fig. 1 PowerPoint slide for Fig. 2 PowerPoint slide for Fig. 3 Rights and permissions About this article Cite this article

References

  1. Benton, M. J. & Clark, J. M. in The Phylogeny and Classification of the Tetrapods. Volume 1: Amphibians, Reptiles, Birds. Systematics Association Special Volume 35A (ed. Benton, M. J. ) 295–338 (Clarendon, 1988)

  2. Gauthier, J. Saurischian monophyly and the origin of birds. Mem. Calif. Acad. Sci . 8, 1–55 (1986)

    Google Scholar

  3. Sereno, P. C. Basal archosaurs: phylogenetic relationships and functional implications. Soc. Vertebr. Paleontol. Mem. 2, 1–53 (1991)

    Article Google Scholar

  4. Sereno, P. C. The evolution of dinosaurs. Science 284, 2137–2147 (1999)

    Article CAS Google Scholar

  5. Dalla Vecchia, F. M. in Anatomy, Phylogeny, and Palaeobiology of Early Archosaurs and their Kin Vol. 379 (eds Nesbitt, S. J ., Desojo, J. B . & Irmis, R. B. ) 119–155 (Geological Society, 2013)

    Google Scholar

  6. Dzik, J. A beaked herbivorous archosaur with dinosaur affinities from the early Late Triassic of Poland. J. Vertebr. Paleontol. 23, 556–574 (2003)

    Article Google Scholar

  7. Nesbitt, S. J. et al. Ecologically distinct dinosaurian sister group shows early diversification of Ornithodira. Nature 464, 95–98 (2010)

    Article ADS CAS Google Scholar

  8. Benton, M. J. Scleromochlus taylori and the origin of dinosaurs and pterosaurs. Phil. Trans. R. Soc. Lond. B 354, 1423–1446 (1999)

    Article Google Scholar

  9. Benton, M. J. & Walker, A. D. Saltopus, a dinosauriform from the Upper Triassic of Scotland. Earth Environ. Sci. Trans. R. Soc. Edinb . 101, 285–299 (2010)

    Google Scholar

  10. Sereno, P. C. & Arcucci, A. B. Dinosaurian precursors from the Middle Triassic of Argentina: Lagerpeton chanarensis. J. Vertebr. Paleontol . 13, 385–399 (1994)

    Article Google Scholar

  11. Sereno, P. C. & Arcucci, A. B. Dinosaurian precursors from the Middle Triassic of Argentina: Marasuchus lilloensis, gen. nov. J. Vertebr. Paleontol. 14, 53–73 (1994)

    Article Google Scholar

  12. Bakker, R. T. & Galton, P. M. Dinosaur monophyly and a new class of vertebrates. Nature 248, 168–172 (1974)

    Article ADS Google Scholar

  13. Brusatte, S. L. et al. The origin and early radiation of dinosaurs. Earth Sci. Rev. 101, 68–100 (2010)

    Article ADS Google Scholar

  14. Langer, M. C., Ezcurra, M. D., Bittencourt, J. S. & Novas, F. E. The origin and early evolution of dinosaurs. Biol. Rev. Camb. Philos. Soc . 85, 55–110 (2010)

    Article Google Scholar

  15. Irmis, R. B. et al. A Late Triassic dinosauromorph assemblage from New Mexico and the rise of dinosaurs. Science 317, 358–361 (2007)

    Article ADS CAS Google Scholar

  16. Rubidge, B. S. Re-uniting lost continents – fossil reptiles from the ancient Karoo and their wanderlust. S. Afr. J. Geol. 108, 135–172 (2005)

    Article Google Scholar

  17. Wopfner, H. Tectonic and climatic events controlling deposition in Tanzanian Karoo basins. J. Afr. Earth Sci. 34, 167–177 (2002)

    Article ADS Google Scholar

  18. Sidor, C. A. et al. Provincialization of terrestrial faunas following the end-Permian mass extinction. Proc. Natl Acad. Sci. USA 110, 8129–8133 (2013)

    Article ADS CAS Google Scholar

  19. Nesbitt, S. J. The early evolution of archosaurs: relationships and the origin of major clades. Bull. Am. Mus. Nat. Hist. 352, 1–292 (2011)

    Article Google Scholar

  20. Ezcurra, M. D. The phylogenetic relationships of basal archosauromorphs, with an emphasis on the systematics of proterosuchian archosauriforms. PeerJ 4, e1778 (2016)

    Article Google Scholar

  21. Nesbitt, S. J ., Barrett, P. M ., Werning, S ., Sidor, C. A . & Charig, A. J. The oldest dinosaur? A Middle Triassic dinosauriform from Tanzania. Biol. Lett . 9, 20120949 (2012)

    Article Google Scholar

  22. Langer, M. C. & Benton, M. J. Early dinosaurs: a phylogenetic study. J. Syst. Palaeontol. 4, 309–358 (2006)

    Article Google Scholar

  23. Padian, K., Horner, J. R. & de Ricqlès, A. Growth in small dinosaurs and pterosaurs: the evolution of archosaurian growth strategies. J. Vertebr. Paleontol. 24, 555–571 (2004)

    Article Google Scholar

  24. Kubo, T. & Kubo, M. O. Associated evolution of bipedality and cursoriality among Triassic archosaurs: a phylogenetically controlled evaluation. Paleobiology 38, 474–485 (2012)

    Article Google Scholar

  25. Butler, R. J. et al. The sail-backed reptile Ctenosauriscus from the latest Early Triassic of Germany and the timing and biogeography of the early archosaur radiation. PLoS One 6, e25693 (2011)

    Article ADS CAS Google Scholar

  26. Butler, R. J. et al. New clade of enigmatic early archosaurs yields insights into early pseudosuchian phylogeny and the biogeography of the archosaur radiation. BMC Evol. Biol. 14, 128 (2014)

    Article Google Scholar

  27. Brusatte, S. L., Benton, M. J., Lloyd, G. T., Ruta, M. & Wang, S. C. Macroevolutionary patterns in the evolutionary radiation of archosaurs (Tetrapoda: Diapsida). Earth Environ. Sci. Trans. R. Soc. Edinb . 101, 367–382 (2010)

    Google Scholar

  28. Brusatte, S. L., Benton, M. J., Ruta, M. & Lloyd, G. T. Superiority, competition, and opportunism in the evolutionary radiation of dinosaurs. Science 321, 1485–1488 (2008)

    Article ADS CAS Google Scholar

  29. Lamm, E.-T. in Bone Histology of Fossil Tetrapods: Advancing Methods, Analysis, and Interpretation (eds Padian, K . & Lamm, E.-T. ) 55–160 (Univ. California Press, 2013)

  30. Goloboff, P. A., Farris, J. S. & Nixon, K. C. TNT: a free program for phylogenetic analysis. Cladistics 24, 774–786 (2008)

    Article Google Scholar

  31. Goloboff, P. A. & Catalano, S. A. TNT version 1.5, including a full implementation of phylogenetic morphometrics. Cladistics 32, 221–238 (2016)

    Article Google Scholar

  32. Niedz´wiedzki, G., Sennikov, A. & Brusatte, S. L. The osteology and systematic position of Dongusuchus efremovi Sennikov, 1988 from the Anisian (Middle Triassic) of Russia. Hist. Biol . 28, 550–570 (2016)

    Article Google Scholar

  33. Close, R. A., Friedman, M., Lloyd, G. T. & Benson, R. B. Evidence for a mid-Jurassic adaptive radiation in mammals. Curr. Biol. 25, 2137–2142 (2015)

    Article CAS Google Scholar

  34. Lloyd, G. T. Estimating morphological diversity and tempo with discrete character-taxon matrices: implementation, challenges, progress, and future directions. Biol. J. Linn. Soc. 118, 131–151 (2016)

    Article Google Scholar

  35. Hamilton, N. ggtern: an extension to ‘ggplot2’, for the creation of ternary diagrams. R package version 2.1.5. https://CRAN.R-project.org/package=ggtern (2016)

  36. R Core Team. R: A language and environment for statistical computing. (R Foundation for Statistical Computing, Vienna, Austria, 2013)

Download references

Acknowledgements

We acknowledge A. Tibaijuka for help with fieldwork logistics in Tanzania. Supported by National Geographic Society Research & Exploration grant (9606-14, S.J.N.), National Science Foundation EAR-1337569 (C.A.S.) and EAR-1337291 (K.D.A., S.J.N.), a Marie Curie Career Integration Grant (630123, R.J.B.), a National Geographic Society Young Explorers grant (9467-14 M.D.E.), and the Russian Government Program of Competitive Growth of Kazan Federal University and RFBR 14-04-00185, 17-04-00410 (A.G.S.). We thank S. Chapman, A. C. Milner, M. Lowe and S. Bandyopadhyay for access to specimens, S. Werning, G. Lloyd, R. Close and K. Padian for discussions, and H. Taylor for photographs of the holotype.

Author information

Author notes

  1. Alan J. Charig: Deceased.

Authors and Affiliations

  1. Department of Geosciences, Virginia Tech, Blacksburg, 24061, Virginia, USA

    Sterling J. Nesbitt&Michelle R. Stocker

  2. School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, B15 2TT, Birmingham, UK

    Richard J. Butler&Martín D. Ezcurra

  3. CONICET—Sección Paleontología de Vertebrados, Museo Argentino de Ciencias Naturales, Buenos, Aires, Argentina

    Martín D. Ezcurra

  4. Department of Earth Sciences, Natural History Museum, Cromwell Road, London, SW7 5BD, UK

    Paul M. Barrett&Alan J. Charig

  5. Integrative Research Center, Field Museum of Natural History, 1400 South Lake Shore Drive, Chicago, 60605, Illinois, USA

    Kenneth D. Angielczyk

  6. Evolutionary Studies Institute, University of the Witwatersrand, PO Wits 2050, Johannesburg, South Africa

    Roger M. H. Smith

  7. Iziko South African Museum, PO Box 61, Cape Town, South Africa

    Roger M. H. Smith

  8. Burke Museum and Department of Biology, University of Washington, Seattle, 98195, Washington, USA

    Christian A. Sidor

  9. Department of Organismal Biology, Uppsala University, Norbyvägen 18A, Uppsala, 752 36, Sweden

    Grzegorz Niedźwiedzki

  10. Borissiak Paleontological Institute, Russian Academy of Sciences, Profsoyuznaya 123, Moscow, 117997, Russia

    Andrey G. Sennikov

  11. Kazan Federal University, Kremlyovskaya ul. 18, Kazan, 420008, Russia

    Andrey G. Sennikov

Authors

  1. Sterling J. Nesbitt

    View author publications

    You can also search for this author in PubMedGoogle Scholar

  2. Richard J. Butler

    View author publications

    You can also search for this author in PubMedGoogle Scholar

  3. Martín D. Ezcurra

    View author publications

    You can also search for this author in PubMedGoogle Scholar

  4. Paul M. Barrett

    View author publications

    You can also search for this author in PubMedGoogle Scholar

  5. Michelle R. Stocker

    View author publications

    You can also search for this author in PubMedGoogle Scholar

  6. Kenneth D. Angielczyk

    View author publications

    You can also search for this author in PubMedGoogle Scholar

  7. Roger M. H. Smith

    View author publications

    You can also search for this author in PubMedGoogle Scholar

  8. Christian A. Sidor

    View author publications

    You can also search for this author in PubMedGoogle Scholar

  9. Grzegorz Niedźwiedzki

    View author publications

    You can also search for this author in PubMedGoogle Scholar

  10. Andrey G. Sennikov

    View author publications

    You can also search for this author in PubMedGoogle Scholar

  11. Alan J. Charig

    View author publications

    You can also search for this author in PubMedGoogle Scholar

Contributions

S.J.N., R.J.B., M.D.E. and P.M.B. designed the research project; C.A.S. and K.D.A. designed the field project; S.J.N., C.A.S., K.D.A., R.M.H.S. and M.R.S. conducted fieldwork; S.J.N., R.J.B., M.D.E., P.M.B., M.R.S. and A.J.C. described the material; S.J.N., M.D.E. and M.R.S. conducted the phylogenetic analyses; R.J.B. conducted disparity analyses; and S.J.N., R.J.B., M.D.E., P.M.B., M.R.S., K.D.A., R.M.H.S., C.A.S., G.N. and A.G.S. wrote the manuscript.

Corresponding author

Correspondence to Sterling J. Nesbitt.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reviewer Information Nature thanks K. Padian and H.-D. Sues for their contribution to the peer review of this work.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Figure 1 Skeletal anatomy of the aphanosaurs Dongusuchus efremovi, Yarasuchus deccanensis and Spondylosoma absconditum.

a, b, D. efremovi. ct, Y. deccanensis. ucc, S. absconditum. a, b, Left holotype femur of D. efremovi (Borissiak Paleontological Institute of the Russian Academy of Sciences, Moscow, Russia (PIN) 952/15-1) in posteromedial (a) and anterolateral (b) views. ce, Right partial femur of Y. deccanensis (Indian Statistical Institute, Kolkata, India (ISIR) unnumbered) in posterolateral (c), proximal (d) and anterolateral (e) views. f, g, Left tibia of Y. deccanensis (ISIR 334) in posterior (f) and distal (g) views. h, i, Left calcaneum of Y. deccanensis (ISIR unnumbered) in proximal (h) and lateral (i) views. j, Second sacral vertebra of Y. deccanensis (ISIR BIA 45/43) in ventral view. k, Right ischium of Y. deccanensis (ISIR 334) in ventrolateral view. l, m, Posterior cervical vertebrae of Y. deccanensis (ISIR BIA 45/43) in posterior (l) and right lateral (m) views. n, o, Right humerus of Y. deccanensis (ISIR 334 53) in anterior (n) and posterior (o) views. p, Right ulna of Y. deccanensis (ISIR 334) in anterior view. q, Trunk vertebra of Y. deccanensis (ISIR BIA 45/43) in left lateral view. r, s, Posterior cervical vertebrae of Y. deccanensis (ISIR BIA 45/43) in posterior (r) and right lateral (s) views. t, Triple-headed rib of Y. deccanensis (ISIR BIA 45) in anterior view. u, x, Original condition (u) of a cervical vertebra (from Huene 1942) of S. absconditum (Paläontologische Sammlung der Universität Tübingen, Tübingen, Germany (GPIT) 479/30) compared to that of the current condition (x). v, w, y, Original condition of a more posterior cervical vertebra of S. absconditum (from Huene 1942) in left lateral (v) and anterior (w) views compared to that of the current condition of the same vertebra in left lateral (y) view. z, Trunk vertebra of S. absconditum in posterior view. aa, Second sacral vertebra of S. absconditum in dorsal view. bb, cc, Right scapula of S. absconditum in lateral (bb) and posterior (cc) views. a., articulates with; ain, anteriorly inclined anterior margin of the neural spine; as, astragalus; ct, calcaneal tuber; dp, deltopectoral crest; fi, fibula; hy, hyposphene; mic, M. iliotrochantericus caudalis scar; mie, M. iliofemoralis externus scar; pr, posterolateral; r, ridge. Scale bars, 1 cm. Outline of Africa and Tanzania obtained from Google Maps.

Extended Data Figure 2 Histological sections of the limb bones of T. rhadinus gen. et sp. nov.

a, Right fibula (NMT RB 488) in lateral (left) and medial (right) views. b, Photo of the histological section of the fibula (NMT RB 488) in regular transmitted light (bright field) (1 plane polarizer). c, Photo of the same section as in b using a full wave retarder (l = 530 nm). d, Left humerus (NMT RB476) in posterior (left) and anterior (right) views. e, Photo of a partial histological section of the humerus (NMT RB476) in regular transmitted light (bright field) (1 plane polarizer). f, Photo of the same section as in e using a full wave retarder (l = 530 nm). Scale bars, 1 mm. Arrows in a, d indicate where each element was sampled. Arrows in b, c, e, f indicate growth marks in the outer cortex.

Extended Data Figure 3 The relationships of T. rhadinus gen. et sp. nov. among archosauriforms from the Nesbitt dataset.

The dataset used has been described in ref. 19. Strict consensus of 36 most parsimonious trees (tree length = 1,374; consistency index = 0.3559; retention index = 0.7807). Bremer support values (first), absolute (second), and GC (third) bootstrap frequencies presented at each branch.

Extended Data Figure 4 The relationships of Teleocrater rhadinus gen. et sp. nov. among archosauriforms from the Ezcurra dataset.

The dataset used has been described in ref. 20. Strict consensus of four most parsimonious trees (tree length = 2,684; consistency index = 0.2955; retention index = 0.6284). Bremer support values (first), absolute (second), and GC (third) bootstrap frequencies presented at each branch.

Extended Data Figure 5 Phylogeny of early Avemetatarsalia illustrating the character distributions of the components of the crocodile-normal ankle configuration and showing that this ankle type was plesiomorphic for Archosauria, Avemetatarsalia, and possible less inclusive clades within Avemetatarsalia (for example, Dinosauriformes).

a, Left calcaneum of the pseudosuchian Nundasuchus songeaensis (NMT RB48). b, Right calcaneum of the aphanosaur T. rhadinus gen. et sp. nov. (reversed) (NMT RB490). c, Left calcaneum of the dinosauriform silesaurid A. kongwe (NMT RB159). Proximal view (left), distal view (middle) and lateral view (right). Scale bars, 1 cm. red, character state present; blue, character state absent; red and blue, basal condition could be either; ?, unknown condition. See Fig. 3 for silhouette sources. 4th, fourth tarsal; a., articulates with; as, astragalus; ct, calcaneal tuber; fi, fibula.

Extended Data Figure 6 Ternary diagrams of measurements of the hindlimb elements (femur, tibia and longest metatarsal) of archosauriforms.

Colour of data points relates to femoral length.

Extended Data Figure 7 The relationships of S. taylori among archosauriforms from the Nesbitt dataset.

The dataset used has been described in ref. 19. Strict consensus of 792 most parsimonious trees (tree length = 1,378; consistency index = 0.3549; retention index = 0.7803) (see Supplementary Information). Bremer support values (first), absolute (second), and GC (third) bootstrap frequencies presented at each branch.

Extended Data Figure 8 The relationships of S. taylori among archosauriforms from the Ezcurra dataset.

The dataset used has been described in ref. 20. Strict consensus of four most parsimonious trees (tree length = 2,693; consistency index = 0.2945; retention index = 0.6280) (see Supplementary Information). Bremer support values (first), absolute (second), and GC (third) bootstrap frequencies presented at each branch.

Extended Data Figure 9 Disparity estimates for major archosaur groups and time intervals (weighted mean pairwise dissimilarity (WMPD)).

Ani, Anisian; C, Changhsingian; Car, Carnian; H, Hettangian; I, Induan; J, Jurassic; Lad, Ladinian; Lo, Lopingian; Nor, Norian; Olen, Olenekian; P, Permian; Rha, Rhaetian.

Extended Data Figure 10 New character illustrations for the phylogenetic analysis.

See Supplementary Information. ac, Archosaurian iliac comparisons for character 414 in the modified dataset of ref. 19. a, Left ilium of Teleocrater rhadinus (NHMUK PV R6795) in lateral view. b, Right ilium of Asilisaurus kongwe (NMT RB159) in lateral view. c, Left ilium of Batrachotomus kupferzellensis (Staatliches Museum für Naturkunde Stuttgart (SMNS) 80273) in lateral view. dg, Avemetatarsalian fibula comparisons for character 415 in the modified dataset of ref. 19. d, e, Left fibula of T. rhadinus (NHMUK PV R6795) in lateral (d) and posterior (e) views. f, g, Left fibula of A. kongwe (NMT RB159) in lateral (f) and posterior (g) views. Arrows highlight the posterior ridge, character 415 state 1. h, i, Archosauriform femoral comparisons for character 417 in the modified dataset of ref. 19. h, Right femur of Erythrosuchus africanus (NHMUK PV R3592) in ventral view. i, Right femur of T. rhadinus (NHMUK PV R6795) in posteromedial view. White dotted regions highlight character 417, state 1. jm, Avemetatarsalian second primordial sacral comparisons for character 416 in the modified dataset of ref. 19. j, k, Second primordial sacral vertebra of T. rhadinus (NMT RB519) in ventral (j) and posterior (k) views. l, m, The second primordial sacral vertebra of A. kongwe (NMT RB159) in ventral (l) and dorsal (m) views. Arrows highlight the posterior process of the sacral rib, character 416, state 1. Scale bars,. 1 cm (ag, im) and 5 cm (h).

Supplementary information

Supplementary Information

This file contains Supplementary Text, Supplementary Tables 1-8 and Supplementary References. (PDF 1167 kb)

Rights and permissions

About this article

The earliest bird-line archosaurs and the assembly of the dinosaur body plan (1)

Cite this article

Nesbitt, S., Butler, R., Ezcurra, M. et al. The earliest bird-line archosaurs and the assembly of the dinosaur body plan. Nature 544, 484–487 (2017). https://doi.org/10.1038/nature22037

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature22037

The earliest bird-line archosaurs and the assembly of the dinosaur body plan (2024)
Top Articles
Latest Posts
Article information

Author: Lilliana Bartoletti

Last Updated:

Views: 5887

Rating: 4.2 / 5 (73 voted)

Reviews: 88% of readers found this page helpful

Author information

Name: Lilliana Bartoletti

Birthday: 1999-11-18

Address: 58866 Tricia Spurs, North Melvinberg, HI 91346-3774

Phone: +50616620367928

Job: Real-Estate Liaison

Hobby: Graffiti, Astronomy, Handball, Magic, Origami, Fashion, Foreign language learning

Introduction: My name is Lilliana Bartoletti, I am a adventurous, pleasant, shiny, beautiful, handsome, zealous, tasty person who loves writing and wants to share my knowledge and understanding with you.